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We present a multistage fuzzy rule-based algorithm for epileptic seizure onset detection. Amplitude, frequency, and entropy-based
features were extracted from intracranial electroencephalogram (iEEG) recordings and considered as the inputs for a fuzzy system.
These features extracted from multichannel iEEG signals were combined using fuzzy algorithms both in feature domain and in
spatial domain. Fuzzy rules were derived based on experts’ knowledge and reasoning. An adaptive fuzzy subsystem was used for
combining characteristics features extracted from iEEG. For the spatial combination, three channels from epileptogenic zone and
one from remote zone were considered into another fuzzy subsystem. Finally, a threshold procedure was applied to the fuzzy output
derived from the final fuzzy subsystem. The method was evaluated on iEEG datasets selected from Freiburg Seizure Prediction EEG
(FSPEEG) database. A total of 112.45 hours of intracranial EEG recordings was selected from 20 patients having 56 seizures was
used for the system performance evaluation. The overall sensitivity of 95.8% with false detection rate of 0.26 per hour and average
detection latency of 15.8 seconds was achieved.

1. Introduction

Epilepsy is the most common neurological disorder which
affects 1–3% world’s population [1–3]. It is characterized by
the occurrence of two or more unprovoked epileptic seizures
which are abnormal rhythmic discharge of electrical activity
of the brain [1–6]. A seizure is defined as a paroxysmal alter-
ation of one or more neurological functions such as motor,
behavior, and/or autonomic functions [1]. Epileptic seizures
are episodic, rapidly evolving temporary events. Typically,
the duration of epileptic seizure is less than a minute [1–3].
Though the mechanism behind epileptic seizure is not com-
pletely known yet, a seizure event can be described as the
increased network excitation of the neural networks with
synchronous discharge as well as variable propagation in
brain [1, 2]. In focal epilepsy, ictal manifestations may local-
ize in a specific brain region, whereas in generalized epilepsy
the whole brain could be candidate for seizure events [1, 2].

Electroencephalogram (EEG) is the most widely used
measure for diagnosis of neurological disorders such as
epilepsy in clinical settings. Long-term monitoring of EEG
is one of the most efficient ways for diagnosis of epilepsy
by providing information about patterns of brain electrical
activity, type, and frequency of seizures, and seizure focus
laterality [1–3, 7]. In long-term monitoring, ictal EEG
recording is usually correlated with the clinical manifestation
of seizure. If the recording site is where the seizure focus
is located, the changes in EEG can occur before the clinical
manifestations [1, 2]. In the case that electrodes are placed
in remote location from the seizure onset site, the clinical
manifestations may occur before any visual changes in EEG.
Therefore, the placement of electrodes is a determining
factor in seizure detection or early detection [3]. The experts
monitoring long-term EEG recordings usually look for
earliest visually apparent changes in EEG to identify ictal
onset [1]. This information helps physician or caregiver to
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treat patients early in time with the available medications.
However, the visual inspection of long-term EEG by clini-
cians is challenging since it is performed over several days
to weeks due to the unknown nature of time of occurrence of
seizures. The visual inspection of this large amount of data to
identify seizure is very time consuming and monotonous as
well [2–4, 7]. Therefore, an automatic seizure detection tool
with high detection rate and considerably low false detection
rate would have valuable application in clinical settings in
epilepsy treatment [1–4, 7].

During a seizure event, increased abnormal synchronous
firing occurs in the involved neural networks of brain. The
pattern and shape of ictal EEG varies according to the brain
region as well as types of recordings (intracranial or scalp
EEG). A detection algorithm should be able to identify these
dynamic changes in EEG with high sensitivity. One of the
most common patterns found in ictal EEG is periodic sharp
activity (6–8 Hz activity of a mesial temporal lobe-onset
seizure) [1, 2]. The ictal onset and offset is also characterized
by relatively high complexity signals. However, the ictal
initiation patterns may vary from patient to patient. Though
the patterns in different patients may vary depending on the
type of seizures, proximity of the recording electrodes to the
seizure onset site, types of recordings the ictal onset patterns,
and early evolution of brain dynamics in a given patient are
of similar types. Therefore, the algorithm parameters can be
tuned in a patient-specific way to increase the specificity and
sensitivity of detections [2, 3].

One of the applications of automatic seizure detection
in clinical settings is to monitor patients and localize
brain regions. As for medically intractable focal epilepsy,
brain tissue of seizure focus is candidate of surgery and
the source localization information helps neurologists in
surgical procedure [1–3, 7]. Moreover, to provide patients
an alternative to surgical treatment, much focus has been
put on early detection or prediction of seizure providing
sufficient time of intervention prior to clinical onset and
ultimately preventing or controlling epilepsy [3]. In theory
of early detection, the ictal manifestation in EEG is expected
to be detected several seconds to a few minutes earlier [2, 3].
Although the intervention time is crucial in designing a
control device, an early detection tool capable of detecting
seizure several minutes prior to clinical seizure onset would
help the patients in avoiding serious injuries by taking proper
action or using available medication to soothe the intensity
of seizure frequency [3, 7].

Significant progress has been made in automatic detec-
tion of seizure in iEEG over the last couple of decades [2–
4, 7–15]. Qu and Gotman [7] developed an automatic seizure
detection method to detect various types of seizures in both
surface and intracranial EEGs. It was based on decomposi-
tion of EEG into elementary waves and detecting paroxysmal
bursts of rhythmic activities using relative amplitude, their
duration, and rhythmicity [7]. Murro et al. [8] developed
a computerized method to detect complex partial seizures.
The method used three EEG features, relative amplitude,
dominant frequency, and rhythmicity. Discriminant analysis
was used for decision making [8]. In order to reasonably
reduce the false alarm rate, Qu and Gotman [9] developed

a warning system based on template matching which relies
on availability of one sample seizure for subsequent detec-
tions of similar seizures in scalp and intracerebral EEG
recordings. Later, Qu and Gotman [10] proposed a seizure
onset detection system with high sensitivity and very low
false positive rate. Osorio et al. [11] proposed an algorithm
for real-time detection, quantitative analysis of seizures,
and prediction of the clinical onsets. Grewal and Gotman
[12] proposed an automatic seizure warning system for
clinical use. Spectral features were extracted after filtering
EEG in multiple bands and Bayes’ theorem was used along
with spatio-temporal analysis. Though the system requires
training in order to obtain the prior probabilities, no
patient training is required at run time [12]. In a different
approach, Adeli et al. [13] performed wavelet sub-band
analysis of EEG and five EEG bands as well as nonlinear
analysis of EEG for detecting seizure and epilepsy. They
used correlation dimension and largest lyapunov exponent
to quantify nonlinear dynamics of EEG [13]. Ghosh-Dastidar
et al. [14] proposed a novel wavelet-chaos-neural network
methodology for detecting epileptic seizures. Srinivasan et
al. [4] proposed a neural network-based automatic seizure
detection system using approximate entropy (ApEn) as the
input feature. Gardner et al. [5] discussed a one-class support
vector machine (SVM) novelty detection for seizures in
iEEG by classifying short-time, energy-based statistics. The
detector was validated on a sample of 41 interictal and 29
ictal epochs and yielded 97.1% sensitivity, mean detection
latency of−7.58 seconds, but false positive rate (FPR) of 1.56
false positive per hour [5]. Chan et al. [6] proposed a patient-
specific algorithm for accurate measurement of seizure onset
time detection. The algorithm makes use of spectral and
temporal features and support vector machine as classifier
[6]. Ghosh-Dastidar and Adeli [16] presented a new super-
vised learning algorithm for Multispiking Neural Networks
(MuSpiNN) which was applied in seizure detection. They
have demonstrated better accuracy of MuSpiNN over single-
spiking Spiking Neural Network (SNN) model [16]. In a
recent work, Zhang et al. [17] proposed a novel incre-
mental learning scheme based on nonlinear dimensionality
reduction for automatic seizure onset detection. They used
continuous wavelet transform (CWT) for feature extraction
and two-stage decision making which makes use of nonlinear
dimensionality reduction and incremental learning schemes
[17].

Recently, much focus has been put in detection of
seizures early in time or eventually predicting it. There
have not been much significant works performed in the
area of seizure detection or early detection based on fuzzy
logic approaches. Subasi [15] introduced the application of
adaptive neurofuzzy inference system (ANFIS) for epileptic
seizures detection and classification for normal and epileptic
patients. This method combined the adaptive capabilities of
artificial neural networks and qualitative approach of fuzzy
logic and features were extracted using the wavelet transform
(WT) [15]. Aarabi et al. [18] presented an automatic method
which uses fuzzy rule-based system to detect seizures in
iEEG. Temporal, spectral, and complexity features extracted
from iEEG were fed into two-stage decision-making systems
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where they were spatial-temporally integrated. Intermediate
decision making was performed in the first stage using rule-
based fuzzy inference system. Final decision was made using
spatial combiner, feature combiner, and postprocessor [18].

In the area of seizure prediction and/or early detection,
several problems or pitfalls have been identified which
requires to be addressed properly and carefully in order
to make further progress [19]. Most of the methods avail-
able in the literature use single-feature extraction method
followed by a predefined crisp threshold for final decision
making [19]. Nonlinear methods are popular to most of the
researchers; however, most of these methods are sensitive to
noise which may lead to wrong findings [18, 19]. Therefore,
the advantages of nonlinear feature extraction methods over
linear methods are yet to be justified [19]. The selection
of test dataset is also critical because direct comparisons of
different studies or approaches are difficult unless those are
applied to the same dataset [19]. Proper statistical validation
remains another major concern [19, 20]. To address one of
these challenges, Feldwisch-Drentrup et al. [21] described
a method using logical “AND” and “OR” combinations in
order to combine two epileptic seizure prediction methods.
The study shows improved performance for both the com-
binations, and the “AND” combination yielded highest
sensitivity [21]. In this study, we have applied fuzzy algo-
rithms for combining more than two methods (four in this
paper) for seizure onset detection. We utilized fuzzy “AND”
combination instead of logical “AND” combination to study
the feasibility of this method in early detection. The results
show that this approach could be a promising solution to
address some of the challenges in the area of early seizure
detection and eventually seizure prediction.

In this paper, we present a fuzzy rule-based adaptive
automatic seizure onset detection method. The overall
method consists of several steps, preprocessing, artifacts
detection, feature extraction, decision making using fuzzy
logic, and postprocessing. Time domain, frequency domain,
and entropy-based features are extracted from EEG seg-
ments. These features are combined using a set of fuzzy
rules and another set of fuzzy rules are used to combine
information spatially. Final decision was made by applying a
threshold procedure to this spatial-temporal combination of
multiple features. Artifacts detection algorithm was applied
prior to feature extraction to identify segments corrupted
with electrode movement and saturation artifacts. The
information was stored to be used in postprocessing step.
False detections caused by artifacts and other activities were
rejected in the postprocessing steps.

2. Materials and Methods

2.1. EEG Recordings. The iEEG recordings were obtained
from the Freiburg Seizure Prediction EEG (FSPEEG)
database [22, 23]. The database contains iEEG data from 21
patients with medically intractable focal epilepsies. The
sampling frequency of the data is 256 Hz. The database con-
tains six channels with common reference, three located on
the epileptogenic zone and three in remote locations [22, 23].

In this study, we selected iEEG datasets obtained from 20
patients to evaluate the performance of the proposed
method. The total length of the data analyzed was 112.45
hours and total numbers of analyzed seizures were 56. The
details of the iEEG data used in this study are shown in
Table 4.

2.2. Preprocessing

2.2.1. Segmentation. The multichannel iEEG data were seg-
mented using a moving window analysis technique. The
length of each segment was 2.5 seconds (640 data points)
with overlap of 0.5 seconds (128 data points) between the
adjacent windows along the whole iEEG recording. This
window length was chosen as a way to divide the signals
into quasistationary segments for correct computation of the
characteristic features [24].

2.2.2. Artifacts Detection. Although iEEG data are usually
less corrupted with artifacts comparing to scalp EEG,
visual inspection confirmed the presence of saturation and
electrode movement artifacts in some patient’s data. The data
files obtained from the FSPEEG database also provide some
information on artifacts, mostly movement artifacts and
visual inspection was performed based on that information.
We implemented an artifacts detection algorithm to identify
the EEG segments corrupted with these two types of artifacts:
saturation and electrode movement. Each segment with
artifacts was marked and the information is stored in
memory to be used later in the postprocessing step. The
artifacts detection algorithm steps are discussed in following
sections.

(A) Saturation Artifact. There were several cases of iEEGs
corrupted with saturation artifacts. At the saturation time,
iEEG signals have constant amplitude. The segments with
saturation artifacts were identified by a derivative method.
Every segment with zero derivatives was marked as segments
with saturation artifacts [18]. A median filter of window size
5 was used to remove all single-segment saturations. This
prevents false detection of artifacts in other EEG segments
rather than in the region of saturation.

(B) Electrode Movement Artifact. Electrode movement arti-
facts are usually caused by patient’s head movement or
displacement of the electrode box. This type of artifact is
of high amplitude with an upstroke [18]. Analytical signal
processing approach was utilized in order to detect envelope
of iEEG segments using Hilbert transform [25]. Average
absolute envelope (Eμ) was computed for each segment using
the following equation:

Eμ = |H(x)|
N

, (1)

where |H(x)| is the absolute of the Hilbert transform [19] of
iEEG segment and N = 640 is the number of samples in each
iEEG segment. The segments with artifacts were identified
from the other EEG segments by applying a predetermined
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threshold (Th = 0.6) after normalizing Eμ within the interval
[0 1]. Threshold estimation is crucial since it is important
not to label a seizure segment as a segment with movement
artifacts. The threshold was determined by setting up a
condition. The condition is the average absolute envelope of
a segment has to be greater than the maximum of average
amplitude of seizure segment to be considered as segment
with artifacts. Therefore, it was confirmed that no seizure
activities were falsely rejected as movement artifacts.

2.2.3. Filtering of EEG. All iEEG segments were band-pass
filtered between 0.5 Hz to 100 Hz using a 4th-order digital
Butterworth filter to mitigate high-frequency noise and low-
frequency artifacts. The iEEG segments were then notch
filtered to remove 50 Hz power line noise.

2.3. Feature Extraction. Time domain, frequency domain
features, and entropy-based features were extracted from
iEEG segments. The four features used in this study were
average amplitude, rhythmicity (coefficient of variation of
amplitude), dominant frequency, and entropy. These features
are known to contain the most discriminant information
for detecting seizure events [7–12, 18]. Features extraction
methods are described briefly in the following sections.

2.3.1. Average Amplitude. Average amplitude (AVA) is a good
measure for temporal evolution of partial seizures [7, 10,
18, 26]. During partial seizures, iEEG signals show rhythmic
activity with a repetition frequency between 3 and 30 Hz
[18, 26]. Therefore, to compute average amplitude, iEEG
segments were first high-pass filtered above 3 Hz to remove
low-frequency noise [18]. Then, a peak detection algorithm
based on the zero-crossings of the first derivative of iEEG
signals was used to detect peaks [18]. The amplitudes of the
peaks were computed by taking average of the amplitudes of
their half waves. Finally, the average amplitude (μamp) was
computed by taking the average of the amplitudes of the
detected peaks [18, 26].

2.3.2. Rhythmicity. Coefficient of variation of amplitude
(CVA) is a measure of rhythmicity or regularities of ictal
activities [18, 27]. During seizure evolution, the regularity of
the amplitude of EEG tends to increase slowly; this increase is
characterized by the CVA [27]. In case of partial seizures, the
signals exhibit strong rhythmic characteristics which likely to
have regularity in amplitude [27]. The coefficient of variation
(CVA) quantifies the increased regularity observed during
partial seizures [18, 27]. The CVA is defined as the ratio of
the standard deviation of absolute amplitude to the mean
absolute amplitude as [18]

δCVA = Aσ

Aμ
, (2)

whereAσ is the standard deviation andAμ is the mean of each
iEEG segment [18, 27].

2.3.3. Entropy. Entropy is a measure of “irregularity” or
“uncertainty” and was initially introduced by Shannon in
1948 [28]. The Shannon entropy (η) is computed as

η = −
∑

k

pk log pk, (3)

where pk are the probabilities of a datum in bin k [18, 28].
Approximate entropy (ApEn) introduced by Pincus and
Goldberger [29] is more appropriate to compute the entropy
for short and noisy time series data. A low value of
the entropy indicates that the time series is deterministic,
whereas a high value indicates randomness. Therefore, a
high value of entropy indicates the irregularities in the iEEG
data. To compute ApEn, it is required to determine a run
length and a tolerance window to measure the likelihood
between runs of patterns [29, 30]. The tolerance window r
and embedding dimension are the two important parameters
in computation of ApEn. In this study, Sample Entropy
(SampEn) which is a variant of approximate entropy to
quantify entropy of iEEG was used considering its robustness
over ApEn [29, 30]. Sample Entropy is the negative natural
logarithm of an estimate of the conditional probability that
segments of lengthm that match pointwise within a tolerance
r also match at the next point [18, 30]. This measure is a
useful tool for investigating dynamics of biomedical signal
and other time series.

2.3.4. Dominant Frequency. Dominant frequency ( fΔ) is
defined as the peak with the maximum spectral power in the
power spectrum of a signal [18]. This feature is particularly
important in distinguishing ictal activities from interictal
activities by quantizing the frequency signature information
mostly found in partial seizures. This is characterized by a
high-frequency activity at seizure onset and a low-frequency
activity at the end of the seizures [18, 26]. In this study,
parametric spectrum estimation method, autoregressive
modeling (AR) approach, was used to estimate the spectral
frequency band of the short EEG segments. The AR model
order was chosen according to Akaike information criterion
(20 in this study) [31]. The Burg method was used for
computing the AR coefficients for short EEG segments [32].
Then, the spectral power of a given segment is estimated
using these AR coefficients. For every spectral peak, the
spectral frequency band was defined as [ fl and fh] where fl
and fh are frequencies at rising and falling slopes of the peak
with half the amplitude of the peak [10, 18]. The frequency
of the peak with maximum spectral power is considered as
the dominant frequency for the given segment [18].

2.4. Fuzzy Rule-Based Detection

2.4.1. Design of Fuzzy Inference System. In this study, we de-
signed a multistage fuzzy rule-based system [33, 34] for
seizure onset detection. Decision making was performed in
three steps. We utilized the information obtained in spatial,
temporal as well as feature domain to make the final
decision. Therefore, the fuzzy system was comprised of three
subsystems: (1) feature combiner, (2) spatial combiner, and



Computational Intelligence and Neuroscience 5

Filtering
Segmentation

Artifacts detection

Feature 
extraction

Fuzzy rule-based 
decision making 

Reject false detections
Apply threshold

Output

Feature
combiner

Spatial 
combiner

Final decision 
making

Store the 
artifacts 
detection 

information

Ch1

Ch2

Ch6

...

Figure 1: Block diagram of seizure onset detection system. The system comprises of preprocessing, feature extraction, decision making, and
postprocessing stages.

(3) final decision making. Figure 1 shows the block diagram
of overall system which includes preprocessing, feature
extraction, fuzzy rule-based decision making, and postpro-
cessing.

Four features (Fi,k, where i = 1, 2, 3, 4 and k = 1, 2, . . . ,
6) were feed into the first fuzzy subsystem which is adaptive
in nature (feature combiner): entropy (F1: ENY), dominant
frequency (F2: DMF), average amplitude (F3: AVA), and
coefficient variation of amplitude (F4: CVA). The second
fuzzy subsystem (spatial combiner) was used to select four
specified channels and combine the feature output from first
fuzzy subsystem across channels. In final stage, another fuzzy
subsystem was used followed by threshold parameter in order
to classify an EEG segment as “normal” or “seizure.” The
steps are discussed in detail in the following sections.

2.4.2. Adaptive Fuzzy Inference System. We have imple-
mented the adaptive version of fuzzy inference system as
described in the previous section. Four features were com-
bined using a carefully designed fuzzy inference system.
Before fuzzifying the feature variables, they were normalized
into the interval of [0 1] using a min-max normalization
method. Triangular and trapezoidal membership functions
were assigned to the fuzzy input and output variables.
Assigning membership function to the fuzzy input variables
which are the features are extremely important and critical
[35]. We utilized fuzzy clustering to adaptively estimate
the parameters for membership functions [35, 36]. Fuzzy
c-means clustering [35, 36] was applied to each of the
feature to generate cluster center for two classes: “normal”
and “seizure.” Then cluster centers were used to generate
the membership function by placing the fuzzy sets at the
corresponding cluster centers. Two membership functions or
fuzzy sets were considered for each of the four input features:
low (L: Fi,k < Thh) and high (H : Fi,k > Thl) as shown in
the Figure 2(a). Thl and Thh were obtained from the cor-
responding cluster centers. This way membership functions
were estimated adaptively based on the characteristics of the
feature sets and the fuzzy system works adaptively. For the
fuzzy output variable (OP1), three levels were assigned as
high (H : OP1 > Thm), medium (M: Thh > OP1 > Thl),
and low (L: OP1 < Thm) as shown in Figure 2(b). The
values of threshold parameters chosen are Thl = 0.3,

Thm = 0.5, and Thh = 0.7. The OP1 is the final feature after
combining the four features. We used triangular and
trapezoidal membership functions for the ease of their
implementation [18].

The set of fuzzy rules for combining the features are
listed in Table 1. Fuzzy logic has been utilized to combine this
information obtained in feature domain using the first set of
rules. The qualitative approach of fuzzy logic is specifically
suitable to combine the four features and map them onto
a final feature time series. The fuzzy output variable (OP1)
will only be high “H” if and only if at least 3 feature input
variables are high “H” and OP1 will be medium “M” if two
feature input variables are high “H”. Rest of the times OP1

will be low “L” as shown in Table 2. Therefore, the imprecise
boundaries of interictal EEG and uncertainty associated
with features were addressed. For example, the behavior of
rhythmicity alone may not hamper the performance of the
overall system. More importantly, if any of the features is
not able to detect subtle changes during seizure onset, a
combination of the features using the fuzzy rules would we
able to detect unless a seizure is missed due to nonspecific
patterns. Similarly, spatial combination allows prioritizing
the importance of in-focus channels due to their higher
sensitivity to ictal activities.

2.4.3. Spatial-Temporal Combination. For spatial combina-
tion, trapezoidal membership functions were assigned to the
fuzzy inputs and output variable (Figure 3). Two levels were
considered for both the input (Chk where k = 1, 2, 3, 4) and
output (OP2): low (L: Fi,k < Thh) and high (H : Fi,k > Thl).
Three channels in epileptogenic zone (Ch1, Ch2, and Ch3)
were combined with one channel chosen from remote area
(Ch4). These four channels were combined using another
set of fuzzy rules based on experts’ reasoning (Table 1). The
criteria was set based on the information that the channels
in seizure onset area is more sensitive in detecting changes
in EEG comparing to those from remote area [1–3]. It is
expected that in-focus channels will detect earliest changes
in EEG. In order to minimize the detection latency, we
considered all three in-focus channels in drawing up the
rules for spatial combination. However, there are interactions
between different channels location in brain. Therefore, to
have modularity of the detection algorithm we have also
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Figure 2: Triangular and trapezoidal membership grades assigned to the extracted features. (a) Fuzzy membership functions for feature
inputs. (b) Fuzzy membership functions for feature output variable.

L H

µ
C

h
k

Thl Thh

Chk

1

0

(a)

µ
O

P
2

Thl Thh

OP2

1

0

L H

(b)

Figure 3: Trapezoidal membership grades assigned for combining
across multiple channels to the extracted features. (a) Fuzzy input
variable. (b) Fuzzy output variable. Two levels: high (H) and low (L)
were considered.

included one channel from remote area. The set of fuzzy rules
for combining the final feature output (OP1) across channels
are listed in Table 2.

In final decision stage, averaging was performed for 5
consecutive segments using moving average method. At the
final stage, another fuzzy inference subsystem was utilized to
combine channel combination (OP2) and segment average
(SA) information. Four rules were defined for mapping onto

Table 1: Fuzzy rules for combining features.

F1 F2 F3 F4 OP1

H H H H H

H H H L H

H H L H H

H L H H H

L H H H H

H H L L M

H L L H M

L L H H M

L H L H M

L H H L M

H L H L M

H L L L L

L H L L L

L L H L L

L L L H L

L L L L L

F1∼4: Feature 1 to Feature 4; OP1: Output 1.

an alarm output space for preliminary decision making as
shown in Table 3.

2.4.4. Fuzzy Implication and Defuzzification Methods. The
Mamdani-minimum implication operator was used for fuzzy
inference and centroid defuzzification method was used to
defuzzify the fuzzy output (FOP) variables [33, 34].

2.5. Postprocessing

2.5.1. Artifacts and False Detections Rejection. Before making
the final decisions, the system scans each iEEG segments for
artifacts. In artifacts detection step, segments with artifacts
were identified and the information was stored to be used in
postprocessing step. False detections caused by artifacts were
filtered in this step. iEEG segments corrupted with artifacts
were assigned a value of “0” which leaves the probability of
detection to zero too. We have performed further analysis
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Table 2: Fuzzy rules for combining channels.

Ch1 Ch2 Ch3 Ch4 OP2

H H H H H

H H H L H

H H L H H

H L H H H

L H H H H

H H L L H

H L L H H

L L H H H

H L H L H

L H L H H

L H H L H

H L L L L

L H L L L

L L H L L

L L L H L

L L L L L

Ch1∼4: Channel 1 to Channel 4; OP2: Output 2.

Table 3: Fuzzy rules for mapping onto an alarm output space.

OP2 SA SZ

H H H

H L M

L H M

L L L

OP2: Output 2; SA: Segment average; SZ: Final output.

on false detections and labeled the false detection rate as
uninteresting and interesting [17]. The uninteresting false
positives are mostly of short duration and caused due to
residual artifacts and large amplitude rhythmic activities. We
have rejected these short-length false detections by setting
minimum length detection criteria [18].

2.5.2. Threshold Parameter. We applied a threshold proce-
dure for final decision making. Whenever the alarm “SZ”
crosses the threshold, a seizure event was detected. Each
segment was assigned probability value of “0” for normal
segment and “1” for seizure segment.

2.6. Performance Evaluation Parameters

2.6.1. Sensitivity. Since the objective of the system is to detect
seizure onsets, sensitivity is an important statistical measure
for event-based performance evaluation. It measures the
ability of a system to detect seizure correctly. It is the measure
of true positive rate and defined as the ratio of the number
of correctly detected seizure onsets to the total number of
seizures [4, 12, 15]. It is expressed in percentage as follows:

Sensitivity = TP
TP + FN

× 100, (4)

where TP and FN are defined as follows.

True Positive (TP). The system detects a seizure that was
annotated as seizure by the expert.

False Negative (FN). The system misses a seizure that was
annotated as seizure by the expert.

2.6.2. False Detection Rate. False detection rate (FDR/hour)
is another important parameter for the system performance
evaluation [18]. It was computed by counting the false
positives and divided by the total data length analyzed in
the experiment for a given patient. To be successfully imple-
mentable in clinical settings, FDR should be considerably low
so that neither the patient nor the caregivers have to wait too
long under false alarms. However, usually it is better to detect
the onset patterns with longer detection latency rather than
missing them.

2.6.3. Detection Latency. Detection latency is the time delay
between the system detected seizure onset and clinical seizure
onset identified by experts [9–12, 18]. Detection latency was
computed as the difference between the clinical seizure onset
(expert detected seizure) and system-detected seizure onset
[12, 18]. For an automatic detection algorithm or in case of
early detection, the detection delay time is expected to be
considerably low or negative for early detection.

3. Results

3.1. Seizure Onset Detection

3.1.1. Changes in Characteristics Features. Before designing
the fuzzy logic system, visual inspection was performed to
identify the types of changes in characteristics features at
the time of seizure onset as well as offset. In most cases, the
values of average amplitude increases after a few seconds on
seizure onset. The values of rhythmicity gradually increase
during seizure onset followed by a decrease to a minimum
then return to the interictal baseline level few seconds prior
to seizure offset [18]. In case of partial seizures, frequency
activity increases right after the seizure onset up to a peak
then gradually decreases to a low-frequency activity. Entropy
values showed increase which reaches the maximum after
a few seconds of seizure onset and fall down to interictal
baseline at seizure offset. This means the complexity of signal
increases during seizure. However, it does not increase to
maximum right after the onset [18]. In some patients the
electrographic changes are identified before clinical onset.
Such a seizure evolution profile and the behavior of the
characteristics features are shown in Figure 4 (patient 9).

3.2. Threshold Estimation. A threshold procedure was used
to make final decision and assigning probability value of “1”
to ictal iEEG segment and “0” to normal iEEG segment.
The threshold procedure was applied to preliminary results
obtained at the output of final fuzzy subsystem where the
spatiotemporal combination was performed. The threshold
parameter was optimized in a patient-specific way. The
setting was optimized prioritizing higher sensitivity and



8 Computational Intelligence and Neuroscience

Table 4: Summary of the iEEG data selected for analysis, including patient number, total data length, gender, age, seizure type, seizure
origin, the number of analyzed seizures, and average seizure duration per patient. Acronyms: SP: simple partial seizure, CP: complex partial
seizure, GTC: generalized tonic-clonic seizure, F: female, M: male.

Patient
Data length

(hour)

Gender
F: female
M: male

Age Seizure type Seizure origin
Number of

analyzed
seizures

Average seizure
duration (seconds)

1 2.48 F 15 SP Frontal 3 15.1

2 5.16 M 38 SP, CP, GTC Temporal 2 107.97

3 5.10 M 14 SP, CP Frontal 4 88.67

4 5.87 F 26 SP, CP,GTC Temporal 3 86.46

5 3.81 F 16 SP, CP, GTC Frontal 2 14.72

6 4.13 F 31 CP, GTC Temporo/Occipital 2 78.6

7 3.91 F 42 SP, CP, GTC Temporal 2 70.71

8 3.49 F 32 SP, CP Frontal 2 163.72

9 8.83 M 44 CP, GTC Temporo/Occipital 5 113.02

11 4.92 F 10 SP, CP, GTC Parietal 3 195.83

12 7.87 F 42 SP, CP, GTC Temporal 4 55.06

13 3.92 F 22 SP, CP, GTC Temporo/Occipital 2 158.3

14 4.91 F 41 CP, GTC Frontotemporal 3 264.95

15 5.92 M 31 SP, CP, GTC Temporal 2 202.39

16 9.83 F 50 SP, CP, GTC Temporal 4 138.94

17 14.59 M 28 SP, CP, GTC Temporal 5 86.16

18 1.96 F 25 SP, CP Frontal 1 13.64

19 5.92 F 28 SP, CP, GTC Frontal 2 15.32

20 6.87 M 33 SP, CP, GTC Temporoparietal 3 122.51

21 2.96 M 13 SP, CP Temporal 2 79.04

Total 112.45 7 M/13 F 29.9 — — 56 103.56

lower false detection rate. It was determined by plotting
the histogram of alarms generated for each patient. We
used threshold values outside two standard deviations above
mean. The range was two to six standard deviations above
mean.

3.3. False Detections. For all patients, all the false positives
less than 9.5 s were rejected except for patient 18 where
the minimum length criteria was lowered to 4 s due to the
unusual short length of one seizure onset pattern. After
rejecting unusual short-length false positives, the system
yielded average false detection rate of 0.26 per hour.

3.4. Performance Evaluation. A total of 112.45 hours of
iEEG dataset having 56 seizures were used for system
performance evaluation. Out of 56 seizures analyzed, the
system correctly detected 54 seizures, whereas 2 seizures were
missed. Therefore, the overall sensitivity achieved was 95.8%;
the false detection rate was 0.26/hour, and average detection
latency was 15.8 seconds.

The data from patient 10 (of FSPEEG database) was
discarded from the analysis due to the excessive presence
of electrode movement artifacts based on the information
obtained from the FSPEEG that in several occasions the

measurement was exceeded, electrode box was disconnected,
and reconnected as shown in Figure 5.

Event-based sensitivity is reported in percentage. A
seizure onset is considered as an event to detect. The average
detection latencies are listed in seconds. Short-length false
detections could also be reduced using a median filter or
considering spatial criteria. The median filtering approach
was tried but it has been seen that it falsely rejects some
true detections which are unusually of short lengths. Also,
it affects the detection latency. To address this, we utilized a
postprocessor to minimize the uninteresting false detections
which are significantly shorter in length then average seizure
duration for each patient as described in postprocessing
section. The overall results are presented in Table 5.

4. Discussions

4.1. Performance Comparison with Other Methods. Our
method yielded average sensitivity of 95.8% with 0.26/h
false detection rate. The average detection latency achieved
was 15.8 seconds as shown in Table 5. The algorithm was
developed in an unsupervised approach. We did not include
the seizure free interictal data for evaluation purpose since
there is no training involved. The dataset we used was
constructed from the “ictal” data files from Freiburg project
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Figure 4: Seizure evolution profile: (a) Top subplot: an example of a seizure evolution in iEEG. (b) Bottom four subplots: corresponding
changes in characteristics features: Average amplitude (AVA), coefficient of variation of amplitude (CVA), dominant frequency (DMF), and
entropy (ENY). Seizure onset is marked by red vertical line. Early electrographic changes are visual in three of the four features.

Table 5: Summary of the results: sensitivity in percentage, false detection rates per hour, and average detection latencies in seconds.

Patient No. of seizures Data Length (h) SEN (%) FDR/h (uninteresting) FDR/h (interesting) Detection Latency (s)

1 3 2.48 66.67 4.4 0.40 7.21

2 2 5.16 100 2.52 0.39 25.03

3 4 5.10 75 0.19 0.19 8.72

4 3 5.87 100 1 0.17 27.43

5 2 3.81 100 0.26 0.26 23.97

6 2 4.13 100 0.72 0 12.64

7 2 3.91 100 1.02 0 17.46

8 2 3.49 100 1.43 0.57 55.46

9 5 8.83 100 1.24 0.34 −24.92

11 3 4.92 100 1.01 0.40 −6.84

12 4 7.87 75 2.16 0.50 21.04

13 2 3.92 100 0.51 0 −37.69

14 3 4.91 100 0.61 0.20 40.14

15 2 5.92 100 0 0 27.37

16 4 9.83 100 3.86 1.01 5.64

17 5 14.59 100 0.06 0 23.52

18 1 1.96 100 1.02 0 0.31

19 2 5.92 100 0.33 0 1.33

20 3 6.87 100 0.43 0.14 27.07

21 2 2.96 100 4.72 0.67 61.42

Total 56 112.45 95.83 1.37 0.26 15.81
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Figure 5: Seizure evolution profile in iEEG obtained from patient
10. Seizure onset and offset times are marked by red vertical lines,
respectively. Acronyms: CH1EPT: Epileptic channel 1, CH4RMT:
Remote channel 4.

which have seizures with at least 50 minutes of preictal data
and postictal data with no specified duration. Therefore, the
false detection rate per hour is little higher comparing to
other methods in the literature but reasonable considering
the evaluation dataset.

Till date, many algorithms for epilepsy and seizure
detection have been developed with different degrees of
success [2–18]. Here, we have discussed briefly some of these
methods providing a scope of comparison with our method.
In a recent study, Zhang et al. [17] proposed an automatic
patient-specific method for seizure onset detection using
a novel incremental learning scheme based on nonlinear
dimensionality reduction. Feature sets were extracted using
continuous wavelet transform (CWT) [17]. Considering
computation time and resources, the choice of discrete
wavelet transform might have been better. Their method
was evaluated on iEEG recordings from 21 patients obtained
from Freiburg project with duration of 193.8 hour and 82
seizures. They have reported average sensitivity of 98.8%
with 0.25/h interesting false positive rate and average median
detection delay of 10.8 s. Aarabi et al. [18] introduced a
fuzzy rule-based system for epileptic seizure detection which
yielded sensitivity of 98.7% and false detection rate of 0.27/h
with detection delay of 11 s. In this paper, different thresholds
were used for different patients and a postprocessor was
utilized to reduce the false detections in two steps. First short-
length detections (less than 5 s) and artifacts were rejected.
Secondly, two consecutive detections were unified given that
they are less than a predefined minimum time interval (set to
30 s) [18]. Chan et al. [6] presented a novel patient-specific
algorithm for seizure onset detection and accurate onset time
determination. The algorithm extracts spectral and temporal
features in five frequency bands within a sliding window
and the feature windows were classified as containing or
not containing a seizure onset using support vector machines
(SVMs) [6]. Support vector machine is a popular classifica-
tion paradigm for epileptic seizure detection and prediction

being used by many researchers in this area. In order to accu-
rately localize the seizure onsets in time, the method makes
use of clustering and regression analysis [6]. Therefore, their
algorithm yielded precise detection in time as reported in five
of the six patients, at least 90% of the latencies are less than
3 s resulting median detection latency less than 100 ms with
standard deviation less than 3 s [6]. However, the method
utilizing user-adjustable parameters allow tuning to achieve
high detection sensitivity, low false positive rate, and low
detection latencies. Standard cross-validation performance
measures resulted sensitivities in the range of 80% to 98%
and false positive rates from 0.12 to 2.8/h [6]. Gardner et
al. [5] presented a detection latency which is negative in
time (−7.58 s) however with a higher false detection rate of
1.56 false detections per hour. Their system was evaluated
on sample of 29 ictal and 41 interictal epochs and achieved
97.1% sensitivity [5]. Grewal and Gotman [12] proposed an
automatic warning system with high sensitivity and low false
alarm rates for clinical use. The system required training
and was tested on locally recorded dataset yielding 89.4%
sensitivity with false detection rate of 0.22 per hour and mean
detection latency of 17.1 seconds with user tuning [12].

The performance of our system is very much comparable
to the other methods. It may not outperform the other meth-
ods in terms of all the performance measuring parameters.
However, considering less mathematically complex design
and lesser number of tuning parameters we have achieved
similar results to other methods and in some cases better
performance in terms of one or two performance measuring
parameters.

4.2. Motivation and Advantage of Using Fuzzy Logic. The
motivation behind our fuzzy rule-based approach is that
fuzzy logic uses a much simpler rule-based design using
natural language. Clinical neurologists mostly look at dif-
ferent features of seizure onset patterns as well as different
channels to identify a seizure correctly. This is however com-
plex to model mathematically and implement in computer
programs. Fuzzy logic on the other hand provides a simpler
design of approximate reasoning which can mimic human
reasoning efficiently. We have developed our method in
such way to mimic the experts’ reasoning in detecting
seizure onset patterns. Furthermore, the system provides a
possibility of lowering the detection latency by incorporating
more sensitive features.

Fuzzy logic has been widely used in many signal pro-
cessing and pattern recognition applications [33, 34]. Fuzzy
rules can be defined using experts’ knowledge for decision
making which are simpler to implement and modular as well.
Increasing the number of rules one can increase the accuracy
of the model. Processing speed can also be improved sig-
nificantly with less complex mathematical analysis and
modeling. Moreover, fuzzy logic is a useful method for non-
linear input-output mapping which is effective in seizure
detection or early detection applications. Other popular
methods such as artificial neural networks and support vec-
tor machines require training, complex mathematical anal-
ysis, and modeling. In this study, we utilized adaptive version
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Table 6: Performance of adaptive fuzzy system over single method
with conventional hard threshold and nonadaptive fuzzy system.

Method SEN (%) FDR/h

Feature 1 (hard threshold) 96.25 1.93

Feature 2 (hard threshold) 93.75 3.62

Feature 3 (hard threshold) 98.75 1.16

Feature 4 (hard threshold) 84.17 1.98

Nonadaptive fuzzy system 91.49 0.35

Adaptive fuzzy system 95.80 0.26

of fuzzy logic system with a novel approach of combining
information in feature as well as spatial and temporal
domain. A comparison of performance of adaptive fuzzy
logic system is shown over conventional hard threshold-
based methods and nonadaptive fuzzy system in Table 6.
Nonadaptive fuzzy system is where the membership func-
tions were generated in a heuristic way. Adaptive fuzzy
system clearly outperforms other methods by demonstrating
better performance in terms of better sensitivity and signifi-
cantly reduces false positive rates.

5. Conclusions and Future Work

In this paper, we presented a robust method of detecting
seizure onset using adaptive fuzzy logic system. Consid-
ering significant progress in the area of automatic seizure
detection, we mainly focused in designing a seizure onset
detection system in order to study the possibility of warning
the patient or caregiver early in time. We also demonstrated
the applicability of fuzzy logic in early detection or prediction
system by comparing the performance improvement over
conventional hard threshold system. The adaptive version of
the fuzzy system is capable of tuning some of the system
parameters in a patient-specific way. This is crucial given the
wide varieties of seizure types as well as stereotyped evolution
and onset patterns in a given patient.

The algorithm was developed in MATLAB and tested
offline. For fuzzy c-means clustering, we used MATLAB
function fcm with default parameters (exponent of the
partition matrix U: 2.0 and maximum number of iterations:
100). The overall system makes use of temporal information
of iEEG as well as spatial information, since there are
interactions between the channels, obtained from three
channels located on seizure focus. Given the promising result
of this study, adaptive fuzzy algorithms could provide a
robust method for designing an early detection or prediction
system. The possibility of reducing the detection latency for
early detection largely depends on the features sensitivity to
detect the preictal changes. Therefore, the performance of the
system could be improved by incorporating feature selection
techniques or choosing features that are sensitive to earliest
electrographic changes in EEG.

In future work, more analysis will be performed based
on the findings of this study to relate the iEEG findings
with brain mechanisms. We will be looking into some of the
specific patterns found in this study as well as study the data

from several patients where interictal activities are stronger
(patients 1, 2, 13, 18, and 21). Also, we will study the data
patterns where there are excessive presence of interictal spikes
or large amplitude rhythmic activities (patients 8, 10, and
18). These findings have been previously reported in the
literature as well [17] and might be the reason for longer
detection latencies in patients 8 and 21.

False alarms could be reduced significantly by consider-
ing the recent developments in artifacts detection techniques
over standard threshold-based methods. In the present
study, standard threshold-based movement artifacts detec-
tion method was used to avoid computational complexity. In
future studies, a machine learning-based movement artifacts
detection method will be included. Finally, we will attempt
implementing a similar approach with relevant features in
early detection of epileptic seizures and eventually targeting
the goal of prediction.
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